and company

Philipp Retzl
Chief Executive Officer
Chief Executive Officer


MatCalc Engineering GmbH is a spin-off company from Vienna University of Technology, with many years of computational material engineering, materials testing and material characterization experience.

Our mission is to provide state of the art computational software, data and expertise in the field of materials engineering for more efficient, faster, cheaper and sustainable innovation, development and production of both materials and components.

Our team consists of multidisciplinary experts bridging the gap between science and practical manufacturing solutions seeking to offer viable step-change improvements in your materials design and your fabrication process. Our services include supporting your R&D projects, material consulting, optimization of your material processing route, material selection or assessment of your new materials, as well as materials testing.

We provide computational metallurgical technology solutions built on the application of the advanced and sophisticated software package “MatCalc” - Materials Calculator. MatCalc models the whole materials design and fabrication process, covering the three main areas of multicomponent thermodynamics, precipitation kinetics and microstructural evolution.

Customers and partners can benefit from the full range of the available know-how to capture opportunities and assure long-term competitive advantage. A general description and samples of our services are detailed below.

MatCalc Engineering GmbH with its theoretical and practical expertise is your reliable partner for research, development and application in the field of materials engineering, process engineering and material computational design. Combination of both experimental investigations in the laboratory, as well as simulation, build our special strength in our services. Read more

Download Our Portfolio

Company overview

To get an overview about our prehistory activities

Our Team

Philipp Retzl

Chief Executive Officer

Ernst Kozeschnik

Chief Executive Officer


Erwin Povoden-Karadeniz

Database Manager


Piotr Warczok

MatCalc Support Manager


Jakob Wagner

Finance, controlling & Sale

Ahmad Falahati

Member of the board and advisor (Ex-CEO)

Why work with
MatCalc Engineering?

Our competitive world offers two possibilities. Either lose, on long term. Or win, only if you stay one step ahead. Rising numbers of international competitors enforce companies to optimize their production process routes and offer high-quality products to be able to stay competitive in the global market. From our experience throughout the last decade, the market urgently seeks for higher efficiency of production lines, which cannot be achieved by empirical try and error method anymore, but requires the predictive capability of materials modeling and simulation. Twenty years of intensive development of MatCalc software provide us with a tool to fulfill these needs of our clients and to help them to stay ahead in their global competitiveness.

Our customers can benefit from the full range of this know-how to capture opportunities such as:

  • Prediction of the evolution of the microstructure during specific processes and the consequence on properties after processing
  • Assessment of new materials before putting them into practical real-world service
  • Through Process Modeling (TPM) and process optimization: TPM will help plant engineers to analyze and solve practical problems much easier, to optimize each process step by simulating the consequences on the final product, to increase industrial process viability and at the same time material quality. It has positive impacts on waste management by reducing defects and decreasing significantly time and cost for development.
  • Integrated Computational Materials Engineering (ICME): Demands a combined strategy of bottom–up and top–down modeling and simulation, which treats various levels of hierarchical material structures in a mathematical representation.
  • Computational materials development; which integrates targeted materials process structure and structure–property models in system frameworks to meet specific engineering needs
  • Materials property modeling
  • Support of R&D projects
  • Materials consulting and materials selection studies
  • Materials characterization
  • Materials testing / mechanical properties
  • Failure investigations and materials defect analysis
  • Training programs and scientific workshops

 As an engineering and consulting company we are obliged to keep your proprietary information secure and we understand the importance of this issue for our customers.


Some representative users of MatCalc software and customers of our services:

  • Austria 
    • AMAG rolling GmbH, Ranshofen, Austria
    • Böhler Edelstahl GmbH & CoKG, Kapfenberg, Austria
    • Böhler Forging, Kapfenberg, Austria
    • Graz University of Technology - Institute for Materials Science and Welding, Graz Austria
    • LKR Light Metals Competence Center, Ranshofen, Austria
    • Materials Center Leoben Forschung GmbH, Leoben, Austria
    • Siemens VAI Metals Technologies GmbH, Casting&Rolling, Linz, Austria
    • University of Leoben, Department General, Analytical and Physical Chemistry, Leoben, Austria
    • University of Leoben, Department Metallurgy, Leoben, Austria
    • University of Leoben, Institute of Mechanics, Leoben, Austria
    • Vienna University of Technology - Institute of Materials Science and Technology, Vienna, Austria
    • voestalpine Stahl GmbH, Linz, Austria
    • voestalpine Stahl Donawitz GmbH & Co KG, Donawitz, Austria
  • Europe
    • Aalto University, School of Chemical Technology, Aalto, Finland
    • Armines Ecole des Mines dAlbi, Paris, France
    • AscoMetal CREAS (research centre), Hagondage, France
    • Aubert & Duval, Clermont-Ferrand La Pardieu, France
    • Benteler Steel/Tube GmbH, Paderborn, Germany
    • BGH Edelstahl Siegen GmbH, Siegen, Germany
    • CEA Saclay, Laboratoire d'Analyse Microstructurale des Matériaux, France
    • Centro Sviluppo Materiali S.p.A., Roma, Italy
    • Deutsche Edelstahlwerke GmbH, Witten, Germany
    • Dillinger Hüttenwerke, Dillingen/Saar, Germany
    • Electricite de France, Ecuelles, France
    • ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
    • ETH Zürich, Laboratory of Metal Physics and Technology, Zürich, Switzerland
    • Fraunhofer IWM, Freiburg, Germany
    • FRO-AIR LIQUIDE Welding Italia S.p.A., Due Carrare, Italy
    • Georgsmarienhütte GmbH, Georgsmarienhütte Germany
    • Karlsruher Institut für Technologie, Karlsruhe, Germany
    • KTH, Materials Science and Engineering, Stockholm, Sweden
    • Metatech GmbH, Kamen, Germany
    • MTU Aero Engines, Munich, Germany
    • MTU Aero Engines Polska, Rzeszow, Poland
    • Osnabrück University of Applied Science, Osnabrück, Germany
    • Ruhr Universität Bochum, Bochum, Germany
    • RWTH Aachen - Department of Ferrous Metallurgy, Aachen Germany
    • RWTH Aachen - Institute for Materials Applications in Mechanical Engineering, Aachen Germany
    • Salzgitter Mannesmann Forschung, Duisburg, Germany
    • Salzgitter Mannesmann Forschung, Salzgitter, Germany
    • Siemens AG Corporate Technology, München Germany
    • Siemens LLC, Moscow, Russia
    • SKF B.V., MT Nieuwegein, The Netherlands
    • SMS Siemag AG, Düsseldorf, Germany
    • Tata Steel, IJmuiden, The Netherlands
    • Technical University Denmark - Department of Mechanical Engineering, Materials Science and Engineering, Lyngby, Denmark
    • TFH Georg Agricola, Bochum, Germany
    • TU Bergakademie Freiberg, Freiberg, Germany
    • TU Chemnitz, Chemnitz, Germany
    • University of Cambridge - Department of Materials Science and Metallurgy, UK
    • University of Warwick, Coventry, UK
    • Vallourec Deutschland GmbH, Düsseldorf, Germany
    • Vallourec Research Aulnoye, France
    • VDM Metals, Altena, Germany
    • Warsaw University of Technology, Warsaw, Poland
  • Others
    • CanmetMATERIALS, Hamilton, ON, Canada
    • Central Research Institute of Electric Power Industry, Tokyo, Japan
    • Chonbuk National University, Jeonju, Korea
    • Frank’s International Inc., Lafayette, LA, USA
    • GE India Technology Centre Pvt. Ltd., Bangalore, India
    • Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology, Korea
    • Hitachi Metals Ltd., Yasugi, Japan
    • Hitachi Research Laboratory, Hitachi, Japan
    • Indian Institute of Technology, Madras, Metallurgical and Materials Eng., India
    • JFE Steel Corporation, Chiba, Japan
    • King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
    • Kookmin University, Seoul, Korea
    • Korea Institute of Materials Science (KIMS), Changwon, Korea
    • Korea Institute of Science and Technology (KIST), Seoul, Korea
    • Lehigh University, Bethlehem, PA, USA
    • Mintek, Randburg, South Africa
    • Mitsubishi Heavy Industries, Ltd., Nagasaki, Japan
    • Mitsubishi Hitachi Power Systems, Ltd., Hiroshima, Japan
    • Mitsubishi Hitachi Power Systems, Ltd., Ibaraki, Japan
    • National Institute of Materials Science, Tsukuba, Japan
    • Nippon Steel & Sumitomo Metal Corporation, Chiba, Japan
    • Nippon Steel & Sumitomo Metal Corporation, Materials Design Technology Co. Ltd., Tokyo, Japan
    • Novelis Inc., Kennesaw, GA, USA
    • Oak Ridge National Laboratory, Oak Ridge, TN, USA
    • Sandvik Asia Pvt. Ltd., Pune, India
    • Seoul National University, Department of Materials Science & Engineering, Seoul, Korea
    • SK Innovation, Daejeon, Korea
    • Tata Steel India, Mumbai, India
    • Texas A&M University, College Station, TX, USA
    • Tohoku University, Department of Metallurgy, Sendai, Japan
    • Tohoku University, Institute of Multidisciplinary Research for Advanced Materials, Sendai, Japan
    • Tsinghua University, Beijing, China
    • Universite Laval, Quebec CIty, QC, Canada
    • University of Tokyo - School of Engineering, Tokyo, Japan

Relevant Publications

  • Gruber, Ch., Raninger, P., Stanojevic, A., Godor, F., Rath, M., Kozeschnik, E., Stockinger, M.:
    “Simulation of Dynamic and Meta-Dynamic Recrystallization Behavior of Forged Alloy 718 Parts Using a Multi-Class Grain Size Model”;
    Materials, 14 (2021), 111.
  • Shan, Y. V., Soliman, M., Palkowski, H., Kozeschnik, E.:
    “Modeling of Bake Hardening Kinetics and Carbon Redistribution in Dual-Phase Steels”;
    Steel Research International, 92 (2021), 2000307.
  • Jacob, A., Povoden-Karadeniz, E.:
    “Predictive computations of intermetallic sigma phase evolution in duplex steel. I) Thermodynamic modeling of sigma phase in the Fe-Cr-Mn-Mo-Ni system”;
    CALPHAD - Computer Coupling Of Phase Diagrams And Thermochemistry, 71 (2020), 101998.
  • Jacob, A., Povoden-Karadeniz, E.:
    „Predictive computations of intermetallic sigma phase evolution in duplex steel. II) Thermo-kinetic simulation in duplex and hyper duplex stainless steels”;
    CALPHAD - Computer Coupling Of Phase Diagrams And Thermochemistry, 71 (2020), 101810.
  • Zuegner, D., Zamberger, S., Yigit, N., Rupprechter, G., Kozeschnik, E.:
    “Thermal Desorption Spectra of H in an Fe-C-Nb Alloy Evaluated by Diffusion Simulation”;
    Steel Research International, 91 (2020), 2000240.
  • Jacob, A., Domain, Ch., Adjanor, G., Todeschini, P., Povoden-Karadeniz, E.:
    “Thermodynamic modeling of G-phase and assessment of phase stabilities in reactor pressure vessel steels and cast duplex stainless steels”;
    Journal of Nuclear Materials, 533 (2020), 152091.
  • Morais, P. J., Gomes, B., Santos, P., Gomes, M., Gradinger, R., Schnall, M., Bozorgi, S., Klein, T., Fleischhacker, D., Warczok, P., Falahati, A., Kozeschnik, E.:
    “Characterisation of a High-Performance Al-Zn-Mg-Cu Alloy Designed for Wire Arc Additive Manufacturing”;
    Materials, 13 (2020), 1610.
  • Ledermueller, C., Kozeschnik, E., Webster, R. F., Primig, S.:
    „Advanced Thermo-mechanical Process for Homogenous Hierarchical Microstructures in HSLA Steels”;
    Metallurgical and Materials Transactions A, 50 (2019), pp. 5800-5815.
  • Popp, R., Haas, S., Scherm, E., Redermeier, A., Povoden-Karadeniz, E., Goehler, T., Glatzel, U.:
    “Determination of solubility limits of refractory elements in TCP phases of the Ni-Mo-Cr ternary system using multiples”;
    Journal of Alloys and Compounds, 40 (2019), p. 219-234.
  • Ritter, N. C., Sowa, R., Schauer, J. C., Gruber, D., Goehler, T., Rettig, R., Povoden-Karadeniz, E., Koerner, C., Singer, R. F.:
    „Effects of Solid Solution Strengthening Elements Mo, Re, Ru, and W on Transition Temperatures in Nickel-Based Superalloys with High gamma'-Volume Fraction: Comparison of Experiment and CALPHAD Calculations”;
    Metallurgical and Materials Transactions A, 49A (2018), pp. 3206-3216.
  • M. Lückl, T. Wojcik, E. Povoden-Karadeniz, S. Zamberger, E. Kozeschnik:
    "Co-precipitation behavior of MnS and AlN in a low-carbon steel";
    Steel Research International, 89 (2018), 1700342.
  • S. Reisinger, E. Kozeschnik, G. Ressel, J. Keckes, A. Stark, S. Marsoner, R. Ebner:
    "Strain energy contributions on the bainitic phase transformation in a CrMoV steel during continuous cooling";
    Materials & Design, 155 (2018), p. 475-484.
  • A. Jacob, E. Povoden-Karadeniz, E. Kozeschnik:
    "Revised thermodynamic description of the Fe-Cr system based on an improved sublattice model of the sigma phase";
    CALPHAD - Computer Coupling of Phase Diagrams and Thermochemistry, 60 (2018), p. 16-28.
  • S. Holly, P. Haslberger, D. Zügner, R. Schnitzer, E. Kozeschnik:
    "Development of high-strength welding consumables using calculations and microstructural characterisation";
    Welding in the World, 62 (2018), p. 451-458.
  • J. Kreyca, E. Kozeschnik:
    "State parameter-based constitutive modelling of stress strain curves in Al-Mg solid solution";
    International Journal of Plasticity, 103 (2018), p. 67-80.
  • M. R. Ahmadi, M. Rath, E. Povoden-Karadeniz, S. Primig, T. Wojcik, A. Danninger, M. Stockinger, E. Kozeschnik:
    "Modeling of precipitation strengthening in Inconel 718 including non-spherical γ'' precipitates";
    Modelling and Simulation in Materials Science and Engineering, 25 (2017), 055005.
  • A. Jacob, E. Povoden-Karadeniz, E. Kozeschnik:
    "The Cr-Nb-Si system: Improved thermodynamic modelling and its use in simulation of Laves phase in steel";
    CALPHAD - Computer Coupling of Phase Diagrams and Thermochemistry, 56 (2017), p. 80-91.
  • J. Kreyca, E. Kozeschnik:
    "Temperature-dependent strain hardening, precipitation and deformation-induced microstructure evolution in AA 6061";
    Materials Science and Engineering A, 708 (2017), p. 411-418.
  • R. Schnitzer, D. Zügner, P. Haslberger, W. Ernst, E. Kozeschnik:
    "Influence of alloying elements on the mechanical properties of high-strength weld metal";
    Science and Technology of Welding and Joining, 22 (2017), p. 536-543.
  • G. Stechauner, S. Primig, E. Kozeschnik:
    "Early stages of Cu precipitation in 15-5 PH maraging steel revisited - Part II: Thermokinetic simulation";
    Steel Research International, 88 (2017), 1600085.
  • J. Svoboda, Y.V. Shan, E. Kozeschnik, F.D. Fischer:
    "Couples and pairs formation-thermodynamics and kinetic modelling applied to Al-Mg-Si";
    Modelling and Simulation in Materials Science and Engineering, 25 (2017), 065011.
  • S.C. Cha, S.H. Hong, M.Y. Kim, J. Park, J.H. Shim, W.S. Jung, M. Rath, E. Kozeschnik:
    "Calphad-based alloy design or advanced automotive steels - Part II: Compositional and microstructural modification for advanced carburizing steels";
    CALPHAD - Computer Coupling of Phase Diagrams and Thermochemistry, 54 (2016), p. 172-180.
  • M. Lückl, O. Caliskanoglu, S. Ilie, J. Six, E. Kozeschnik:
    "Impact of Surface Structure Control Cooling during continuous casting on hot ductility of microalloyed steel";
    Steel Research International, 87 (2016), p. 871-879.
  • M. Lückl, S. Zamberger, E. Kozeschnik:
    "Kinetics simulation of MnS precipitation in electrical steel";
    Steel Research International, 87 (2016), p. 271-275.
  • M.A. Stopher, P. Lang, E. Kozeschnik, P.E.J. Rivera-Diaz-del Castillo:
    "Modelling hydrogen migration and trapping in steels";
    Materials & Design, 106 (2016), p. 205-215.
  • J. Svoboda, Y. V. Shan, E. Kozeschnik, F. D. Fischer:
    "A thermokinetic model for Mg–Si couple formation in Al–Mg–Si alloys";
    Modelling and Simulation in Materials Science and Engineering, 24 (2016), 035021.
  • M. Werinos, H. Antrekowitsch, E. Kozeschnik, T. Ebner, F. Moszner, J.F. Löffler, P.J. Uggowitzer, S. Pogatscher:
    "Ultrafast artificial aging of Al-Mg-Si alloys";
    Scripta Materialia 112 (2016), p. 148-151.
  • S. Zamberger, P. Lang, G. Klösch, J. Klarner, E. Kozeschnik:
    "Long-range diffusion of H in the presence of traps in a microalloyed steel";
    Computational Materials Science, 113 (2016), p. 266-274.
  • J. Kreyca, A. Falahati, E. Kozeschnik:
    "Microstructure and flow stress modelling during plastic deformation of an aluminum alloy type A6061";
    Materials Today: Proceedings, 2S (2015), p. 107-112.
  • P. Lang, M., Rath, E. Kozeschnik, P. Rivera-Diaz-del-Castillo:
    "Modelling the influence of austenitisation temperature on hydrogen trapping in Nb containing martensitic steels";
    Scripta Materialia, 101 (2015), p. 60-63.
  • E. Povoden-Karadeniz, P. Lang, F Moszner, S Pogatscher, A. Ruban, P.J. Uggowitzer, E. Kozeschnik:
    "Thermodynamics of Pd-Mn phases and extension to the Fe-Mn-Pd system";
    CALPHAD - Computer Coupling of Phase Diagrams and Thermochemistry, 51 (2015), p. 314-333.
  • J. Shim, E. Povoden-Karadeniz, E. Kozeschnik, B. Wirth:
    "Modeling precipitation thermodynamics and kinetics in type 316 austenitic stainless steels with varying composition as an initial step toward predicting phase stability during irradiation";
    Journal of Nuclear Materials, 462 (2015), p. 250-257.
  • G. Stechauner, E. Kozeschnik:
    "Thermo-kinetic modeling of Cu precipitation in alpha-Fe";
    Acta Materialia, 100 (2015), p. 135-146.
  • T. Weisz, P. Warczok, T. Ebner, A. Falahati, E. Kozeschnik:
    "Simulation of natural aging in Al-Mg-Si alloys";
    Materials Science Forum, 828-829 (2015), p. 468-473.
  • S. Zamberger, L.C. Whitmore, S. Krisam, T. Wojcik, E. Kozeschnik:
    "Experimental and computational study of cementite precipitation in tempered martensite";
    Modelling and Simulation in Materials Science and Engineering, 23 (2015), 055012.
  • M.R. Ahmadi, E. Povoden-Karadeniz, K. Öksüz, A. Falahati, E. Kozeschnik:
    "A model for precipitation strengthening in multi-particle systems";
    Computational Materials Science, 8 (2014), S. 173 - 186.
  • M.R. Ahmadi, E. Povoden-Karadeniz, B. Sonderegger, K. Öksüz, A. Falahati, E. Kozeschnik:
    "A model for coherency strengthening of large precipitates";
    Scripta Materialia, 84-85 (2014), S. 47 - 50.
  • M.R. Ahmadi, E. Povoden-Karadeniz, L.C. Whitmore, M. Stockinger, A. Falahati, E. Kozeschnik:
    "Yield strength prediction in Ni-base alloy 718Plus based on thermo-kinetic precipitation simulation";
    Materials Science and Engineering A, 608 (2014), S. 114 - 122.
  • M.R. Ahmadi, B. Sonderegger, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik:
    "Precipitate strengthening of non-spherical precipitates extended in < 100 > or {100} direction in fcc crystals";
    Materials Science and Engineering A, 590 (2014), S. 262 - 266.
  • M.R. Ahmadi, L.C. Whitmore, E. Povoden-Karadeniz, M. Stockinger, A. Falahati, E. Kozeschnik:
    "Simulation of yield strength in AllvacR 718PlusTM";
    Advanced Materials Research, 922 (2014), S. 7 - 12.
  • A. Falahati, W. Jun, P. Lang, M.R. Ahmadi, E. Povoden-Karadeniz, E. Kozeschnik:
    "Assessment of parameters for precipitation simulation of heat treatable aluminum alloys using differential scanning calorimetry";
    Transactions of Nonferrous Metals Society of China, 24 (2014), S. 2157 - 2167.
  • P. Lang, T. Wojcik, E. Povoden-Karadeniz, E. Kozeschnik:
    "Crystal structure and free energy of Ti2Ni3 precipitates in Ti-Ni alloys from first principles";
    Computational Materials Science, 93 (2014), S. 46 - 49.
  • P. Lang, T. Wojcik, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik:
    "Thermo-kinetic prediction of metastable and stable phase precipitation in Al-Zn-Mg series aluminium alloys during non-isothermal DSC analysis";
    Journal of Alloys and Compounds, 609 (2014), S. 129 - 136.
  • P. Lang, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik:
    "Simulation of the effect of composition on the precipitation in 6xxx Al alloys during continuous-heating DSC";
    Journal of Alloys and Compounds, 612 (2014), S. 443 - 449.
  • P. Lang, T. Weisz, M.R. Ahmadi, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik:
    "Thermo-kinetic simulation of the yield strength evolution of AA7075 during natural aging";
    Advanced Materials Research, 922 (2014), S. 406 - 411.
  • F Moszner, E. Povoden-Karadeniz, S. Pogatscher, P.J. Uggowitzer, Y. Estrin, S.S.A Gerstl, E. Kozeschnik, J.F. Löffler:
    "Reverse alpha' -> gamma transformation mechanisms of martensitic Fe-Mn and age-hardenable Fe-Mn-Pd alloys upon fast and slow continuous heating";
    Acta Materialia, 72 (2014), S. 99 - 109.
  • M. Nöhrer, W. Mayer, S. Primig, S. Zamberger, E. Kozeschnik, H. Leitner:
    "Influence of Deformation on the Precipitation Behavior of Nb(CN) in Austenite and Ferrite";
    Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 45A (2014), Sept; S. 4210 - 4219.
  • M. Nöhrer, W. Mayer, S. Zamberger, E. Kozeschnik, H. Leitner:
    "Precipitation Behavior of Strain- Induced V Precipitates in Ferrite at Different Temperatures in a 0.2 wt% Carbon Steel";
    Steel Research International, 85 (2014), 4; S. 679 - 688.
  • S. Pogatscher, E. Kozeschnik, H. Antrekowitsch, M. Werinos, S.S.A.Gerstl, J.F. Löffler, P.J. Uggowitzer:
    "Process-controlled suppression of natural aging in an Al-Mg-Si alloy";
    Scripta Materialia, 89 (2014), S. 53 - 56.
  • E. Povoden-Karadeniz, E. Eidenberger, P. Lang, G. Stechauner, H. Leitner, E. Kozeschnik:
    "Simulation of precipitate evolution in Fe-25 Co-15 Mo with Si addition based on computational thermodynamics";
    Journal of Alloys and Compounds, 587 (2014), S. 158 - 170.
  • J. Svoboda, Y.V. Shan, E. Kozeschnik, F.D. Fischer:
    "Determination of depths of multiple traps for interstitials and their influence on diffusion kinetics"
    Modelling and Simulation in Materials Science and Engineering, 22 (2014), 065015
  • A. Timoshenkov, P. Warczok, M. Albu, J. Klarner, E. Kozeschnik, R. Bureau, C. Sommitsch:
    "Modelling the dynamic recrystallization in C-Mn micro-alloyed steel during thermo-mechanical treatment using cellular automata";
    Computational Materials Science, 94 (2014), S. 85 - 94.
  • A. Timoshenkov, P. Warczok, M. Albu, J. Klarner, E. Kozeschnik, G. Gruber, C. Sommitsch:
    "Influence of deformation on phase transformation and precipitation of steels for oil country tubular goods";
    Steel Research International, 85 (2014), 6; S. 954 - 967.
  • L.C. Whitmore, M.R. Ahmadi, L Guetaz, H. Leitner, E. Povoden-Karadeniz, M. Stockinger, E. Kozeschnik:
    "The microstructure of heat-treated nickel-based superalloy 718Plus";
    Materials Science and Engineering A, 610 (2014), S. 39 - 45.
  • L.C. Whitmore, M.R. Ahmadi, M. Stockinger, E. Povoden-Karadeniz, E. Kozeschnik, H. Leitner:
    "Microstructural investigation of thermally aged nickel-based superalloy 718Plus";
    Materials Science and Engineering A, 594 (2014), S. 253 - 259.
  • P. Lang, M. Lang, A. Falahati, E. Kozeschnik:
    "The Effect of Si on the Precipitation Behaviour in Al-Mg-Si Alloys Studied by Thermo-kinetic Simulation and DSC Experiments";
    Berg- und Hüttenmännische Monatshefte (BHM), 159 (2013), 3; S. 116 - 121.
  • E. Povoden-Karadeniz, P. Lang, P. Warczok, A. Falahati, W. Jun, E. Kozeschnik:
    "CALPHAD modeling of metastable phases in the Al-Mg-Si system";
    CALPHAD - Computer Coupling of Phase Diagrams and Thermochemistry, 43 (2013), 12; S. 94 - 104.
  • E. Povoden-Karadeniz, D. Cirstea, P. Lang, T. Wojcik, E. Kozeschnik:
    "Thermodynamics of Ti-Ni shape memory alloys";
    CALPHAD - Computer Coupling of Phase Diagrams and Thermochemistry, 41 (2013), 10; S. 128 - 139.
  • S. Zamberger, T. Wojcik, J. Klarner, G. Klösch, H. Schifferl, E. Kozeschnik:
    "Computational and Experimental Analysis of Carbo-Nitride Precipitation in Tempered Martensite";
    Steel Research International, 84 (2013), 1; S. 20 - 30.
  • E. Povoden-Karadeniz, E. Kozeschnik:
    "Simulation of Precipitation Kinetics and Precipitation Strengthening of B2-precipitates in Martensitic PH 13-8 Mo Steel";
    ISIJ International, 52 (2012), 4; S. 610 - 615.
  • P. Warczok, J. Zenisek, E. Kozeschnik:
    "Atomistic and continuums modeling of cluster migration and coagulation in precipitation reactions";
    Computational Materials Science, 60 (2012), S. 59 - 65.
  • L.C. Whitmore, H. Leitner, E. Povoden-Karadeniz, R. Radis, M. Stockinger:
    "Transmission electron microscopy of single and double aged 718Plus superalloy";
    Materials Science and Engineering A, 534 (2012), S. 413 - 423.
  • S. Zamberger, M. Pudar, K. Spiradek-Hahn, M. Reischl, E. Kozeschnik:
    "Numerical simulation of the evolution of primary and secondary Nb(CN), Ti(CN) and AlN in Nb-microalloyed steel during continuous casting";
    International Journal of Materials Research, 103 (2012), 6; S. 680 - 687.
  • R. Radis, S. Schwarz, S. Zamberger, E. Kozeschnik:
    "AlN Precipitation During Isothermal Annealing of Ultra Low Carbon Steel";
    Steel Research International, 82 (2011), 8; S. 905 - 910.
  • P. Warczok, D. Reith, M. Schober, H. Leitner, R. Podloucky, E. Kozeschnik:
    "Investigation of Cu precipitation in bcc-Fe - Comparison of numerical analysis with experiment";
    International Journal of Materials Research, 102 (2011), 6; S. 709 - 716.
  • A. Falahati, E. Povoden-Karadeniz, P. Lang, P. Warczok, E. Kozeschnik:
    "Thermo-kinetic computer simulation of differential scanning calorimetry curves of AlMgSi alloys";
    International Journal of Materials Research, Vol. 101 (2010), 9; S. 1089 - 1096.
  • M. Pudar, S. Zamberger, K. Spiradek-Hahn, R. Radis, E. Kozeschnik:
    "Computational Analysis of Precipitation during Continuous Casting of Microalloyed Steel";
    Steel Research International, 81 (2010), 5; S. 372 - 380.
  • R. Schnitzer, R. Radis, M. Nöhrer, M. Schober, R. Hochfellner, S. Zinner, E. Povoden-Karadeniz, E. Kozeschnik, H. Leitner:
    "Reverted Austenite in PH 13-8 Mo Maraging Steels";
    Materials Chemistry and Physics, 122 (2010), S. 138 - 145

Our partners


Institute of Materials Science and Technology (IMST), TU Wien

The chair of Materials Technology at the IMST of TU Wien deals with the manufacturing and processing of metallic materials, with special focus on steel and aluminum alloys. The main center of research is the experimental characterization and the development of materials models for the simulation of the microstructure evolution and the materials behavior of technical alloys during thermal and thermo-mechanical treatment. 


LKR Leichtmetallkompetenzzentrum Ranshofen GmbH

The LKR is a subsidiary of AIT and forms the Competence Unit "Light Metals Technologies Ranshofen" within the AIT Center for Low-Emission Transport. As a research center, the LKR is focused on high-quality light metal alloys and sustainable manufacturing processes, as well as functionally integrated lightweight components.


SinusPro GmbH

SinusPro is an engineering service provider specialist in the field of mechanical engineering with focus on virtual product development and the application of analysis and simulation techniques.


Matplus GmbH

MatPlus is an independent specialist for materials data systems and associated services. German distributor of the software package JMatPro® for the calculation of temperature-dependent materials properties for a variety of technical alloys.


Simufact Engineering GmbH

Simufact provides software solutions for a wide range of metal working and metal production processes: Simufact Forming®, Simufact Welding®, Simufact Additive®.

Visit Us

MatCalc Engineering is located in the center of Vienna:

Gumpendorferstraße 21,
1060 Vienna, Austria
Tel.: +43 1 5850735

You can reach us easily and quickly from all parts of the city.

Public transportation: U1 Station Karlsplatz, exit Secession


From Westbahnhof: take U3 to Stephansplatz, then U1 to Karlsplatz

From Wien Hauptbahnhof: take U1 to Karlsplatz

From Airport Wien Schwechat: take the Airportbus to Schwedenplatz and U1 to Karlsplatz. Alternatively, take train S7 from Airport to Praterstern and U1 to Karlsplatz

Our Services


  • TU Wien
  • AIT
  • Simufact
  • MatPlus



  • History behind
  • Our team
  • References
  • Publications

Local distributors

  • Japan
  • Korea
  • China
  • India


  • Software

  • Databases
  • Event


  • Subscription
  • Newsletter archive
© MatCalc Engineering GmbH. All rights reserved.