New ME-databases released

   

Metallurgical

   

Nobody knows the future,

   

New features of MatCalc 6

   

Engineering your material,

 

Check the new version highlights

 

Processing Solutions

but we can simulate it...

Learn more about them

enjoy your success

Spring'17 release of ME-databases

In this example, the yield strength simulation in binary Fe-Cu is shown. The strength of a material should be calibrated in a “simple” system and, then, the parameters can be transferred to complex alloys. The precipitation of Cu in Fe-Cu is based on the data of Goodman et al. (1973). It starts off with the nucleation of coherent bcc-Cu and evolves with the transformation to the semi-coherent 9R structure and the incoherent fcc-Cu. A direct-particle transformation is used for the evolution of Cu-precipitates. Figure 1 displays the calculated evolution of the mean particle radii, the number densities and the phase fractions of the different stages of Cu precipitates.

 

  

 Figure1: Calculated evolution of the mean particle radii, the number densities and the phase fractions of Cu precipitates

 

In Figure 2 the particle strengthening contribution to the yield strength is visible (red line). The other contributions, like work hardening, intrinsic lattice strength, solid solution strengthening, grain size strengthening and subgrain size strengthening, are considered for the green line. 

  

Figure2: Yield strength in binary Fe-Cu